Title: Definitions of Terms

This is an internal working document of the Serial ATA International Organization. As such, this is not a completed standard and has not been approved. The Serial ATA International Organization may modify the contents at any time. This document is made available for review and comment only.

Permission is granted to the Promoters, Contributors and Adopters of the Serial ATA International Organization to reproduce this document for the purposes of evolving the technical content for internal use only without further permission provided this notice is included. All other rights are reserved and may be covered by one or more Non Disclosure Agreements including the Serial ATA International Organization participant agreements. Any commercial or for-profit replication or republication is prohibited. Copyright © 2000-2008 Serial ATA International Organization. All rights reserved.
This Draft Specification is NOT the final version of the Specification and is subject to change without notice. A modified, final version of this Specification (“Final Specification”) when approved by the Promoters will be made available for download at this Web Site: http://www.serialata.org.

THIS DRAFT SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. Except for the right to download for internal review, no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted or intended hereunder.

THE PROMOTERS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN THIS DRAFT SPECIFICATION. THE PROMOTERS DO NOT WARRANT OR REPRESENT THAT SUCH USE WILL NOT INFRINGE SUCH RIGHTS.

THIS DOCUMENT IS AN INTERMEDIATE DRAFT FOR COMMENT ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

* Other brands and names are the property of their respective owners.

Copyright © 2005-2008 Serial ATA International Organization. All rights reserved.
Author Information

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Company</th>
<th>Email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mladen Luksic</td>
<td>Western Digital</td>
<td>mladen.luksic@wdc.com</td>
</tr>
</tbody>
</table>

Workgroup Chair Information

<table>
<thead>
<tr>
<th>Workgroup (Phy, Digital, etc...)</th>
<th>Chairperson Name</th>
<th>Email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>digital</td>
<td>Mladen Luksic</td>
<td>mladen.luksic@wdc.com</td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Nov. 7, 2008</td>
<td>Initial release.</td>
</tr>
<tr>
<td>1</td>
<td>Nov. 14, 2008</td>
<td>Changed initial release TPB to ECNU (ECN) to be able to include changes into the Rev. 3.0 spec; included original definitions</td>
</tr>
<tr>
<td>2</td>
<td>Nov. 29, 2008</td>
<td>Added appropriate references in the existing spec (Rev. 2.6)</td>
</tr>
</tbody>
</table>
1 Introduction

There are many places in the Revision 2.6 specification document where terms are defined, or used, inconsistently. This proposal corrects and clarifies definitions of basic terms in a consistent manner. [Editor's Note: the changes shall be included in respective places in the specification document.]

2 Definition Changes

2.1 Dword

4.1.33 Dword
Replace
A Dword is thirty-two (32) bits of data. A Dword may be represented as 32 bits, as two adjacent words, or as four adjacent bytes. When shown as bits the least significant bit is bit 0 and most significant bit is bit 31. The most significant bit is shown on the left. When shown as words the least significant word (lower) is word 0 and the most significant (upper) word is word 1. When shown as bytes the least significant byte is byte 0 and the most significant byte is byte 3. See Figure 1 for a description of the relationship between bytes, words, and Dwords. Dwords are aligned on four byte boundaries to a zero reference defined by a comma character.

with

A Dword is an ordered set of thirty-two (32) bits. The least significant bit is bit 0 and the most significant bit is bit 31.

2.2 Word

4.1.103 word
Replace
A word is sixteen (16) bits of data. A word may be represented as 16 bits or as two adjacent bytes. When shown as bits the least significant bit is bit 0 and most significant bit is bit 15. The most significant bit is shown on the left. When shown as bytes the least significant byte (lower) byte is byte 0 and the most significant byte (upper) byte is byte 1. See Figure 1 for a description of the relationship between bytes, words and Dwords.

with

A word is an ordered set of sixteen (16) bits. The least significant bit is bit 0 and the most significant bit is bit 15.

2.3 Byte

4.1.8 byte
Replace
A byte is 8 bits of data. The least significant bit is bit 0 and the most significant bit is bit 7. The most significant bit is shown on the left. In the encoding process the bits in a byte are referred to as HGFEDCBA, or “A,B,C,D,E,F,G,H” where A corresponds to bit 0 and H corresponds to bit 7.
2.4 Relationship between Dword, word and byte

4.2.7 Byte, word and Dword Relationships
Replace
Figure 1 illustrates the relationship between bytes, words and Dwords.

With

A byte is an ordered set of eight (8) bits. The least significant bit is bit 0 and the most significant bit is bit 7.

2.5 Character

4.1.9 character
Replace
A character is a representation of a data byte or control code. There are two types of characters: data characters and control characters.

With

A character is a representation of a byte in the Zxx.y notation (see 9.2.1 [Ed. Section 9.2.1 has to be revised]).

2.6 Data Character

4.1.25 data character
Replace
A data character is a combination of a byte value with the control variable equal to D.

With
A data character is a character in which Z is equal to D (see 9.2.1 [Ed. Section 9.2.1 has to be revised]).

2.7 Control Character

4.1.21 control character

A control character is a combination of a byte value with the control variable equal to K.

with

A control character is a character in which Z is equal to K see 9.2.1 [Ed. Section 9.2.1 has to be revised]).

2.8 Primitive

4.1.81 primitive

A primitive is a single Dword of information that consists of a control character in byte 0 followed by three additional data characters in bytes 1-3. [Ed. Note: Integration team, please check general usage]

with

A primitive is a special Dword used by the Link layer for the transport control. Byte 0 of each primitive is a control character.