Serial ATA Revision 3.2 ECN #083
Title : Tx impedance balance cleanup

This is an internal working document of the Serial ATA International Organization. As such, this is not a completed standard and has not been approved. The Serial ATA International Organization may modify the contents at any time. This document is made available for review and comment only.

Permission is granted to the Promoters, Contributors and Adopters of the Serial ATA International Organization to reproduce this document for the purposes of evolving the technical content for internal use only without further permission provided this notice is included. All other rights are reserved and may be covered by one or more Non Disclosure Agreements including the Serial ATA International Organization participant agreements. Any commercial or for-profit replication or republication is prohibited. Copyright © 2000 to 2015 Serial ATA International Organization. All rights reserved.
This Draft Specification is NOT the final version of the Specification and is subject to change without notice. A modified, final version of this Specification (“Final Specification”) when approved by the Promoters will be made available for download at this Web Site: http://www.sata-io.org.

THIS DRAFT SPECIFICATION IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE. Except for the right to download for internal review, no license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted or intended hereunder.

THE PROMOTERS DISCLAIM ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PROPRIETARY RIGHTS, RELATING TO USE OF INFORMATION IN THIS DRAFT SPECIFICATION. THE PROMOTERS DO NOT WARRANT OR REPRESENT THAT SUCH USE WILL NOT INFRINGE SUCH RIGHTS.

THIS DOCUMENT IS AN INTERMEDIATE DRAFT FOR COMMENT ONLY AND IS SUBJECT TO CHANGE WITHOUT NOTICE.

* Other brands and names are the property of their respective owners.

Copyright © 2000 to 2015 Serial ATA International Organization. All rights reserved.
Author Information

<table>
<thead>
<tr>
<th>Author Name</th>
<th>Company</th>
<th>Email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harvey Newman</td>
<td>Avago Technologies</td>
<td>harvey.newman@avagotech.com</td>
</tr>
</tbody>
</table>

Workgroup Chair Information

<table>
<thead>
<tr>
<th>Workgroup (Phy, Digital, etc…)</th>
<th>Chairperson Name</th>
<th>Email address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phy</td>
<td>Chuck Hill</td>
<td>cphill@altaeng.com</td>
</tr>
</tbody>
</table>

Document History

<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>January 29, 2015</td>
<td>Initial release.</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Problem Statement
The common mode impedance is listed as 100 ohm while the differential impedance is listed as 25 ohm in the Tx impedance balance section 7.4.3.2.6.

1.2 Solution Summary
Change the common mode impedance to 25 ohm. Change the differential impedance to 100 ohm.

1.3 Background (optional)
A request for clarification was posted to the SATA-IO Logo reflector highlighting the issue. The issue was identified as an error. The requestor was offered a chance to submit an ECN but no response has been provided. This issue has existed since Serial ATA Revision 2.5.
2 Technical Specification Changes

2.1 <Title of section being changed>
[editor note: Existing text is black. New text is marked as underlined in blue color. Material to be deleted is red with strikethrough markings.]

2.1.1.1 < 7.4.3.2.6> Tx impedance balance (Gen2i, Gen2m, Gen3i)
Impedance balance is defined as the ratio (expressed in dB) of common mode incident power at a 25Ω ohm impedance level to differential mode reflected power at a 25Ω ohm impedance level. The impedance balance is a bound on the coupling between common and differential modes.